
Simplicity in the Source
April 25, 2024

mteich@google.com



Why?

● I want you to care about simplicity
● I want you to want to care about simplicity
● I want you to not have to rewrite your own project after 5 years



What is "the Source"?

● Source of features
● Source of bugs
● Source of complexity
● Source of documentation?!
● Source of truth

Use the force, Luke!

Read the source!



Economies of Scale - R/W Inequality

● Source is read ~10x more often than it is written to (by humans). Think 
review, debugging, understanding how something works (source is the source 
of truth, not documentation), and finally turndown.

● Keep the audience in mind, not everyone is as smartass as you are.
● If you spend 1 minute to clarify your source so that each reader needs 10 

seconds less to understand it, that's a big win.

https://skeptics.stackexchange.com/questions/48560/is-code-read-more-often-than-its-written


Measuring Complexity - Linecount

● Same functionality in less lines of source code
● Can be very problematic in the extreme (obfuscation, arcane language 

features)
● Heavily depends on programming language
● Count comments, empty lines for visual grouping, lines with only { / }?



Measuring Complexity - Cyclomatic, Cognitive

● score each function based on number and nesting levels of loops and 
conditions

● can be a good signal in many cases
● not so much for complex algorithms, repetitive conditionals
● extracting a new function that would only be used in one call site can hurt 

readability because now the reader needs to jump around to understand the 
full source.



Exponential Configuration Complexity

● Almost always when you add a new special configuration (setting, flag, 
experiment, hardware variant), you're not just adding new special 
configuration, you're adding a new dimension in your configuration space and 
with that you're multiplying the number of possible combinations.

● Impossible to test all combinations
● Interactions between configuration dimensions become harder to understand 

and reason about, it becomes frustrating to work on the project, starting its 
decay and demise -> abandoned, costly rewrite or turndown

● Practical advice: Think twice before adding a new flag. If possible, have a 
clear plan to remove it again asap.



Feature Creep? Complexity Creep!

● wego case study
○ personal fun project
○ went "viral"
○ lots of feature requests
○ nice guy me tried to make everyone happy by adding all the features
○ fulfill all niche requirements, but source became unmaintainable
○ project abandoned :(
○ -> question every user request critically. Is the change in scope for the project? 

Would the change benefit >80% of users? Would it be a reasonable default? If not, 
reject it.

https://github.com/schachmat/wego


Write for Humans, not for Computers!

● If your source is clear, you don't need a lot of comments explaining it.
● Compilers are extremely efficient at optimizing source for performance, don't 

try to beat them unless you have an actual performance issue.
● Simpler source is easier to maintain and thus has a higher life expectancy 

and avoids costly rewrites.



Tips: Write for Humans not for Computers

● Use long flag names in scripts so the reader doesn't have to open the man 
page.

○ grep -B 5 -m 1 pattern

○ grep --before-context 5 --max-count 1 pattern

○ Also helps with searching for flag usage.
● Prefer --quiet or --silent over &>/dev/null
● Avoid this style

https://git.suckless.org/st/file/arg.h.html


Incident Response

● Time is critical.
● More time to understand the broken piece of source ->

○ More error budget consumed.
○ More money lost.

● Hyperlink from logs to source.
● Embed your stack trace in your error message.

○ Canonical in Go: return fmt.Errorf("parse config: %w", err)
○ Quickly reconstruct error condition with very basic and reliable tools (log message, source).



Delete

● Antoine de Saint Exupéry: "It seems that perfection is reached not when there 
is nothing left to add, but when there is nothing left to take away"

● Duplicates: Projects that achieve the same goal.
● Command line flags - most are never used
● Variables / constants only used once. Inline them so readers don't have to 

jump around the source to find their value.
● User interaction points - "Almost all user input is error"



Idempotency - Just Execute!

● Don't check for existence of a file / binary or state of something before acting. 
Just execute the step and handle the error (if any).

● Multiple problems with checking first:
○ race condition: state could be changed by another process between check and execution
○ harder to read for humans (and computers too)
○ Mostly no benefit -> dead weight

● Idempotency: Ignore current state, ensure intended state. Like a recipe: "Fill 
bowl with 1 liter of water", not "If the bowl is empty, fill it with 1 liter of water"

● Your enemies: test -f, systemctl status | grep
● Your friends: rm -f, mkdir -p, os.MkdirAll, systemctl (re)start



Consistency! Consistency everywhere!

● Helps with reading source, because our minds don't have to adapt to different 
styles

● When modifying existing source, adopt its style. Don't enforce your own 
preference.

● Local consistency (e.g. same file, same project) is much more important and 
easy to achieve than global consistency (e.g. programming language style 
guide, company level)



Locality

● Keep parts together that are relevant to each other
● Why: Avoids scrolling / jumping around when reading source
● Declare variables in as narrow a scope as possible
● Assign value to a variable as late as possible
● Reading source becomes easier because you don't need to keep as much 

state in your head.



Interfaces

● Make your library easy to use
● Make your library hard to use incorrectly
● Avoid complicated multi-step initialization sequences
● Use clear function and parameter names



Avoid Advanced Language Features ("Syntactic Sugar")

● Makes the source easier to read for people who are not familiar with the 
language already

● E.g.: Ternary operator in C: int foo = bar ? baz : frob;
● Perl secret operators
● Learn and stick to the "idiomatic" style of the language

○ for (int i = 0; i < n; i++) (idiomatic)
○ int i = 1; for (; i <= n; ++i) (non-idiomatic)

https://metacpan.org/dist/perlsecret/view/lib/perlsecret.pod


Before Asking For Review

● Detach yourself mentally from the source you've just written.
● Forget everything about it. Get coffee.
● Read it.
● Is it clear?
● Is it easy to understand?
● Is it fun?
● Take one minute to improve what you found.



Homework Thyme!

1. Open https://go.dev/play/p/XKbCdoxZRff
2. Simplify it!
3. Send it to me: mteich@google.com
4. Receive my simplified version in return

https://go.dev/play/p/XKbCdoxZRff
mailto:mteich@google.com


Takeaways

● Source is read ~10x more often than it is written.
● Keep the audience in mind, not everyone is as smartass as you are.
● Spend 1 minute to clarify your source so that each reader needs 10 seconds 

less to understand it.

https://skeptics.stackexchange.com/questions/48560/is-code-read-more-often-than-its-written


References and Reading / Watching Material

● KISS - keep it simple, stupid
● UNIX Philosophy
● suckless.org
● clean coder - Bob Martin
● 5 Step Engineering Principles - Elon Musk

https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Unix_philosophy
https://suckless.org/
https://cleancoders.com/
https://www.christianscheb.de/archives/893


Answers


