Simplicity in the Source

April 25, 2024
mteich@google.com

Why?

e | want you to care about simplicity
e | want you to want to care about simplicity
e | want you to not have to rewrite your own project after 5 years

What is "the Source"?

Source of features

Source of bugs

Source of complexity
Source of documentation?!
Source of truth

Use the force, Luke!

Read the source!

Economies of Scale - R/W Inequality

e Source is read ~10x more often than it is written to (by humans). Think
review, debugging, understanding how something works (source is the source
of truth, not documentation), and finally turndown.

e Keep the audience in mind, not everyone is as smartass as you are.

e If you spend 1 minute to clarify your source so that each reader needs 10
seconds less to understand it, that's a big win.

https://skeptics.stackexchange.com/questions/48560/is-code-read-more-often-than-its-written

Measuring Complexity - Linecount

e Same functionality in less lines of source code

e Can be very problematic in the extreme (obfuscation, arcane language
features)

e Heavily depends on programming language

e Count comments, empty lines for visual grouping, lines with only { / }?

Measuring Complexity - Cyclomatic, Cognitive

score each function based on number and nesting levels of loops and
conditions

can be a good signal in many cases

not so much for complex algorithms, repetitive conditionals

extracting a new function that would only be used in one call site can hurt
readability because now the reader needs to jump around to understand the
full source.

Exponential Configuration Complexity

e Almost always when you add a new special configuration (setting, flag,
experiment, hardware variant), you're not just adding new special
configuration, you're adding a new dimension in your configuration space and
with that you're multiplying the number of possible combinations.

e Impossible to test all combinations

e Interactions between configuration dimensions become harder to understand
and reason about, it becomes frustrating to work on the project, starting its
decay and demise -> abandoned, costly rewrite or turndown

e Practical advice: Think twice before adding a new flag. If possible, have a
clear plan to remove it again asap.

Feature Creep? Complexity Creep!

e wego case study

personal fun project

went "viral"

lots of feature requests

nice guy me tried to make everyone happy by adding all the features

fulfill all niche requirements, but source became unmaintainable

project abandoned :(

-> question every user request critically. Is the change in scope for the project?
Would the change benefit >80% of users? Would it be a reasonable default? If not,
reject it.

O O O O O O O

https://github.com/schachmat/wego

Write for Humans, not for Computers!

e If your source is clear, you don't need a lot of comments explaining it.

e Compilers are extremely efficient at optimizing source for performance, don't
try to beat them unless you have an actual performance issue.

e Simpler source is easier to maintain and thus has a higher life expectancy

and avoids costly rewrites.

Tips: Write for Humans not for Computers

e Use long flag names in scripts so the reader doesn't have to open the man

page.

o grep -B 5 -m 1 pattern

o grep --before-context 5 --max-count 1 pattern
o Also helps with searching for flag usage.

e Prefer --quiet or --silent over &>/dev/null
e Avoid this style

https://git.suckless.org/st/file/arg.h.html

Incident Response

e Time is critical.

e More time to understand the broken piece of source ->

o More error budget consumed.
o More money lost.

e Hyperlink from logs to source.
e Embed your stack trace in your error message.

o Canonical in Go: return fmt.Errorf("parse config: %w", err)
o Quickly reconstruct error condition with very basic and reliable tools (log message, source).

Delete

e Antoine de Saint Exupeéry: "It seems that perfection is reached not when there
is nothing left to add, but when there is nothing left to take away"

e Duplicates: Projects that achieve the same goal.

e Command line flags - most are never used

e \Variables / constants only used once. Inline them so readers don't have to
jump around the source to find their value.

e User interaction points - "Almost all user input is error"

ldempotency - Just Execute!

e Don't check for existence of a file / binary or state of something before acting.
Just execute the step and handle the error (if any).

e Multiple problems with checking first:
o race condition: state could be changed by another process between check and execution
o harder to read for humans (and computers too)
o Mostly no benefit -> dead weight

e |dempotency: Ignore current state, ensure intended state. Like a recipe: "Fill
bowl with 1 liter of water”, not "If the bowl is empty, fill it with 1 liter of water"

e Your enemies: test -f, systemctl status | grep

e Your friends: rm -f, mkdir -p, os.MkdirAll, systemctl (re)start

Consistency! Consistency everywhere!

e Helps with reading source, because our minds don't have to adapt to different
styles

e \When modifying existing source, adopt its style. Don't enforce your own
preference.

e Local consistency (e.g. same file, same project) is much more important and
easy to achieve than global consistency (e.g. programming language style
guide, company level)

Locality

Keep parts together that are relevant to each other

Why: Avoids scrolling / jumping around when reading source

Declare variables in as narrow a scope as possible

Assign value to a variable as late as possible

Reading source becomes easier because you don't need to keep as much
state in your head.

Interfaces

Make your library easy to use

Make your library hard to use incorrectly

Avoid complicated multi-step initialization sequences
Use clear function and parameter names

Avoid Advanced Language Features ("Syntactic Sugar")

e Makes the source easier to read for people who are not familiar with the
language already

e E.g.: Ternary operatorin C: int foo = bar ? baz : frob;

e Perl secret operators

e Learn and stick to the "idiomatic" style of the language
o for (int i = @; i < n; i++) (idiomatic)
o int i = 1; for (; i <= n; ++i) (non-idiomatic)

https://metacpan.org/dist/perlsecret/view/lib/perlsecret.pod

Before Asking For Review

Detach yourself mentally from the source you've just written.
Forget everything about it. Get coffee.

Read it.

Is it clear?

Is it easy to understand?

Is it fun?

Take one minute to improve what you found.

Homework Thyme!

Open https://go.dev/play/p/XKbCdoxZRIff
Simplify it!

Send it to me: mteich@google.com
Receive my simplified version in return

LN~

https://go.dev/play/p/XKbCdoxZRff
mailto:mteich@google.com

Takeaways

e Source is read ~10x more often than it is written.

e Keep the audience in mind, not everyone is as smartass as you are.

e Spend 1 minute to clarify your source so that each reader needs 10 seconds
less to understand it.

https://skeptics.stackexchange.com/questions/48560/is-code-read-more-often-than-its-written

References and Reading / Watching Material

KISS - keep it simple, stupid

UNIX Philosophy

suckless.org

clean coder - Bob Martin

5 Step Engineering Principles - Elon Musk

https://en.wikipedia.org/wiki/KISS_principle
https://en.wikipedia.org/wiki/Unix_philosophy
https://suckless.org/
https://cleancoders.com/
https://www.christianscheb.de/archives/893

Answers

